
Distagon® T* 3.5/60 CFi

HASSELBLAD

Experienced photographers utilize the Distagon® T* 3.5/60 CFi lens as interior specialist. It is great for portaits of people in their environment, where space would be too limited for the Planar® T* 2.8/80 CFE lens and the pronounced wide angle perspective of the Distagon® T* 4/50 CFi lens may distort heads of people located close to the edge of the frame. Groups indoors are such a typical task for wedding photographers, and a rewarding one: Photos like these will sell successfully, if people like the way they are depicted. And photos of wedding groups have to be tremendously sharp to ensure everyone in a hundred-people group can be clearly and pleasantly recognised!

The Distagon® T* 3.5/60 CFi lens is the perfect tool. Its performance goes clearly beyond the ability of today's sharpest color films. No professional wedding photographer should be without one. Aerial photography from low flying aircraft is another field benefitting from the resolving power of the Distagon® T* 3.5/60 CFi lens and so is industrial documentation. To put it quite frankly: The Distagon® T* 3.5/60 CFi lens is very favourable value for money.

Preferred use: people, groups indoors, weddings, aerial shots rather wide open, digital photography

Cat. No. of lens 10 49 57 Number of elements Number of groups Max. aperture f/3.5 Focal length 60.2 mm Negative size 55 x 55 mm

Angular field 2w width 50°, height 50°, diagonal 66°

Min. aperture CFi Camera mount

Prontor CFi 1s-1/500s, b, f Shutter Filter connection Hasselblad, series 60 Focussing range infinity to 0.6 m

Working distance (between mechanical front end of

lens and subject) 0.4 m Close limit field size 417 mm x 417 mm

Max. scale

Entrance pupil

32.2 mm behind the first lens vertex Position

Diameter 17.0 mm

Exit pupil

22.7 mm in front of the last lens vertex Position

26.7 mm Diameter

Position of principal planes

53.8 mm behind the first lens vertex H' 11.0 mm behind the last lens vertex

Back focal distance 71.1 mm

Distance between first

and last lens vertex 75.3 mm Weight 680 g

Performance data:

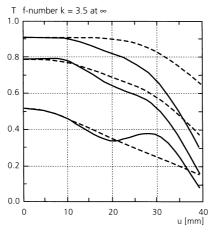
Distagon[®] T* 3.5/60 CFi

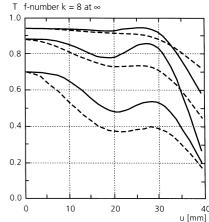
Cat. No. 10 49 57

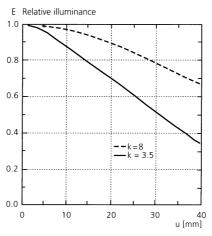
1. MTF Diagrams

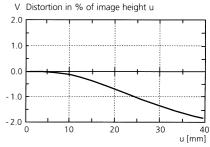
The image height u - calculated from the image center - is entered in mm on the horizontal axis of the graph. The modulation transfer T (MTF = Modulation Transfer Factor) is entered on the vertical axis. Parameters of the graph are the spatial frequencies R in cycles (line pairs) per mm given at the top of this page.

The lowest spatial frequency corresponds to the upper pair of curves, the highest spatial frequency to the lower pair. Above each graph, the f-number k is given for which the measurement was made. "White" light means that the measurement was made with a subject illumination having the approximate spectral distribution of daylight. Unless otherwise indicated, the performance data refer to large object distances, for which normal photographic lenses are primarily used.


2. Relative illuminance


In this diagram the horizontal axis gives the image height u in mm and the vertical axis the relative illuminance E, both for full aperture and a moderately stopped-down lens. The values for E are determined taking into account vignetting and natural light decrease.


3. Distortion


Here again the image height u is entered on the horizontal axis in mm. The vertical axis gives the distortion V in % of the relevant image height. A positive value for V means that the actual image point is further from the image center than with perfectly distortion-free imaging (pincushion distortion); a negative V indicates barrel distortion.

Modulation transfer T as a function of image height u. Slit orientation: tangential — — — sagittal — White light. Spatial frequencies $R=10,\,20$ and 40 cycles/mm

Subject to change. Printed in Germany 29.05.2002

Carl Zeiss
Camera Lens Division
73446 Oberkochen
Germany
Telephone ++49-7364-20-6175
Fax ++49-7364-20-4045
eMail: photo@zeiss.de
http://www.zeiss.de/photo